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Chronotate: An open-source tool for manual timestamping and 
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A B S T R A C T   

A core necessity to behavioral neuroscience research is the ability to accurately measure performance on 
behavioral assays, such as the novel object location and novel object recognition tasks. These tasks are widely 
used in neuroscience research and measure a rodent’s instinct for investigating novel features as a proxy to test 
their memory of a previous experience. Automated tools for scoring behavioral videos can be cost prohibitive and 
often have difficulty distinguishing between active investigation of an object and simply being in close proximity 
to an object. As such, many experimenters continue to rely on hand scoring interactions using stopwatches, 
which makes it difficult to review scoring after-the-fact and results in the loss of temporal information. Here, we 
introduce Chronotate, a free, open-source tool to aid in manually scoring novel object behavior videos. The 
software consists of an interactive video player with keyboard integration for marking timestamps of behavioral 
events during video playback, making it simple to quickly score and review bouts of rodent-object interaction. In 
addition, Chronotate outputs detailed interaction bout data, allowing for nuanced behavioral performance an
alyses. Using this detailed temporal information, we demonstrate that novel object location performance peaks 
within the first 3 s of interaction time and preference for the novel location becomes reduced across the test 
session. Thus, Chronotate can be used to determine the temporal structure of interactions on this task and can 
provide new insight into the memory processes that drive this behavior. Chronotate is available for download at: 
https://github.com/ShumanLab/Chronotate.   

1. Introduction 

The accurate and reliable assessment of behavioral performance in 
rodents has been of great benefit to virtually every field of neuroscience 
research from both a basic research and preclinical perspective [1]. Two 
of the most commonly used rodent behavioral assays are the novel ob
ject recognition (NOR) and novel object location (NOL) tasks [2,3]. 
These two assays test a rodent’s ability to learn the layout and features of 
an environment and identify changes to that environment after a delay 
[2]. As such, these tasks test both learning and memory, as a rodent must 
first learn about an environment and then later remember it well enough 
to determine which object has changed location or identity. Because 
rodents have an innate tendency to investigate novel over familiar 
stimuli [4], memory performance can be measured as a ratio of how 

much time the rodent spends investigating novel versus familiar stimuli 
or a new location of familiar stimuli. In fact, this instinct towards 
investigating novel stimuli or location is so robust that if an equivalent 
amount of time is spent investigating a novel and a familiar stimulus/ 
location, it is interpreted as the rodent forgetting which is novel and 
which is familiar [3]. It is therefore critical to the interpretation of this 
data that the time the rodents spend investigating both novel and 
familiar stimuli or location be accurately assessed and reported. 

A number of machine-learning based tools for automated behavior 
scoring exist [5–9], but these tools often require specialized video 
recording setups, large sets of training data, and significant time to fine- 
tune the underlying models [10]. Moreover, subtle distinctions between 
nuanced behaviors often require the judgment of the experimenter to 
resolve ambiguous cases. For example, the difference between an animal 
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sniffing an object and an animal grooming while facing an object can be 
difficult for an automated scoring tool to accurately classify. For these 
reasons, many experimenters performing the NOR and NOL tasks 
continue to rely on hand-scoring methods to measure rodent-object 
investigation times and ratios. 

At its simplest, NOR/NOL video scoring requires recording the total 
time spent interacting with each object. As such, a common method of 
scoring would consist of using two stopwatches to time the total dura
tion of all bouts of exploration for each of the novel and familiar objects 
as the video is played back in real-time. This approach has several dis
advantages. Recording multiple short bouts of interaction in succession 
is hindered by the difficulty of pressing the start/stop button of a stop
watch repeatedly, and making even one error can require the scorer to 
restart from the beginning of the video. Moreover, recording only the 
total amount of time spent with each object prevents more granular 

analysis of how interaction changes over the course of the session. If the 
experimenter is later interested in reexamining only the first 30 s of 
exploration, for example, then each video would need to be rescored. 
Additionally, this approach makes evaluating inter-rater reliability 
difficult, as scoring of individual bouts cannot be directly compared. 
Fortunately, however, many of these issues can be addressed by 
manually noting the duration and timestamp of each bout of interaction, 
though doing this in a purely manual fashion would be arduous and 
time-consuming. 

Several behavioral scoring software packages support using key
strokes to mark timestamped events on behavioral videos, but the price 
of these tools can be prohibitive in many applications [2,8]. For this 
reason, and those discussed above, we developed Chronotate: a free, 
open-source tool to aid in the hand-scoring of behavior videos. Here we 
demonstrate Chronotate’s utility for assessing mouse performance on 
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Fig. 1. Chronotate for novel object location test scoring. (A) Schematic of novel 
object location (NOL) protocol. Mice were handled for 5 days before being 
habituated to an empty arena for 2 days. On the 8th day of training, mice were 
re-habituated to the empty arena before a training session, where 2 objects were 
added to the arena. Following a 1hr, 4hr, or 1 day delay, mice were placed back 
into the arena with one of the objects relocated. (B) Chronotate graphical 
interface. A list of time-stamped interaction bouts is displayed on the right and a 
progress bar along the bottom of the interface allows for seeking to precise time 
points. (C) Default keyboard controls for scoring object interaction (J,K,L,;), 
speeding up or slowing down (W,S), skipping forward or back (D,A), and playing 
or pausing (space). Key bindings can be customized as desired by activating the 
‘customize key binds’ dialog from the top of the main window.   
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the NOL task and explore object investigation bout-by-bout in addition 
to surveying cumulative investigation preferences over the duration of 
testing. We find that not only is Chronotate useful for scoring videos, but 
that the more granular data analyses it permits can shed light on NOR 
and NOL behavioral assay design. 

2. Materials and methods 

2.1. Animals 

The use of animals and the experimental protocols were approved by 
the Icahn School of Medicine’s Institutional Animal Care and Use 
Committee, in accordance with the US National Institutes of Health 
guidelines. 

For comparison of NOL scoring between stopwatches and Chronotate 
(Figs. 1, 2A), male and female C57BL6 mice (Charles River Lab, strain 
027) were ordered directly from the vendor and were tested in the NOL 
task at 12 weeks of age. For evaluation of inter-rater reliability (Fig. 2B- 
D), male and female wild-type B6129SF2/J (Jackson Laboratory, RRID: 
IMSR_JAX: 101045; [11,12]) and 3xTg (Mouse Mutant Resource and 
Research Center, RRID:MMRRC_034830-JAX; [12]) mice were main
tained with in-house breeding in approved breeding facilities at Mount 
Sinai and were tested in the NOL at 6–8 months of age. For investigating 

the time course of object preference (Fig. 3), male C57Bl/6J mice 
(Jackson Laboratory, Bar Harbor, ME) were ordered directly from the 
vendor and were tested in the NOL at 3–6 months of age, as in Chen et al. 
2023 [13]. All animals were housed in a temperature-controlled vivar
ium and were given food and water ad libitum. Lights were kept on a 12- 
hour light–dark cycle (lights on at 0700). 

2.2. Novel object location memory task 

For 4–5 days prior to being introduced to the behavioral arena, mice 
were habituated to transportation from the animal facility to behavior 
room where they were then gently handled for 5 min (Fig. 1A) [13,14]. 
On the 6th and 7th days, mice were habituated to the behavioral arena 
(30 × 30 × 30 cm, white acrylic) for 10 min per day. On these days, the 
arena was empty except for distinct spatial cues on each of the four 
walls. On the 8th day, mice were returned to the same arena for one 
(Fig. 2A, Fig. 3) to three (Fig. 2C-D) training sessions, where two 
identical objects (plastic toys or door stoppers ~ 2″ x 2″) were taped 
down near two corners of the arena (Fig. 1A). Mice were then returned 
to their home cage for 1 h (Fig. 2A), 4 h (Fig. 2C-D), or 1 day (Fig. 3) 
before the testing session. During testing, one of the two objects was 
relocated to a corner of the arena that was previously empty (Fig. 1A). 
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Fig. 2. Time-stamped outputs allow detailed assessment of inter-rater reliability. (A) Preference scores from Chronotate are highly correlated to those scored with a 
stopwatch (Pearson’s r = 0.99, p < 0.0001, n = 16 videos). (B) Preference scores by two independent raters are highly correlated (Pearson’s r = 0.93, p < 0.0001, n 
= 42 animals). (C, D) Cumulative exploration across a video with high inter-rater agreement (C) and a video with lower inter-rater agreement (D). The points 
corresponding to these two videos are noted in B. 
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2.3. Scoring 

Mouse-object interactions were scored manually using stopwatches 
or using Chronotate [13,14]. Interactions were identified as periods in 
which an animal was sniffing, whisking at the object, or looking at an 
object while touching it. Time spent sitting on objects, touching them 
while rearing up, or grooming while facing an object were not counted 
as exploration. The mouse’s preference for investigating the moved 
(novel) vs the unmoved (familiar) objects was calculated as the ratio of 
time spent interacting with the novel over the total time: 

Preference =
Interaction time with the moved object

Total interaction time 

For the analysis in Fig. 3, mice that spent <30 s of exploration or <8 
min in the arena during the training session were excluded [13]. 

For scoring with stopwatches, total time spent with each object was 
scored with an individual stopwatch for each of the two objects, starting 
and stopping the timer at the beginning and end of each bout of 
exploration [13,14]. For scoring with Chronotate, each of the two ob
jects was assigned to a particular keyboard key. Each bout of object 
interaction was marked by pressing the relevant key at the start of 
exploration and releasing the key at the end of the bout. Marker files 
containing time stamped interaction bouts for each video were exported 
for subsequent analysis. 

2.4. Chronotate 

Chronotate uses key-down and key-up keyboard events to record 
video timestamps of the start time and end time of each bout of inter
action (Fig. 1C). Simultaneous scoring of up to four different objects is 
currently supported. Because the recorded timestamps are relative to the 
actual position in the video and not an external timer, there is no need to 
watch the video back in real-time while scoring. Chronotate allows the 
user to speed up video playback to score long videos more efficiently, or 
slow down playback to more precisely mark the times of rapid events, all 
with keyboard strokes (Fig. 1C). Additionally, Chronotate allows the 
user to skip forward or backward in fixed increments, and seek to a 
specific time using a progress bar integrated into the graphical interface 
(Fig. 1B). All keyboard shortcuts can be customized by activating the 
‘customize key binds’ dialog from the top of the Chronotate window. 
Custom key bindings will be saved in a ‘keyBinds.json’ file in the same 
directory as the Chronotate application. 

Each interaction start/stop event logged is displayed in the side panel 
for review (Fig. 1B). Following scoring, these markers can be exported 
and analyzed externally according to the needs of the individual 
experiment. The marker file will be saved to the same directory the 
video is loaded from as a .csv file named for the corresponding video. In 
addition, a previously exported marker file can be imported alongside its 
corresponding video in order to review and assess inter-rater reliability. 
Importantly, clicking on any event recorded in the side panel will seek 
the video playback to the recorded timestamp, allowing an experimenter 
to review the scoring of any individual event. 

All functionality of Chronotate is implemented in Python. The 
graphical interface (Fig. 1B) is implemented using the tkinter package. 
Video playback is supported by a modified version of the open-source 
tkVideoPlayer package, as well as the Python Imaging Library (Pillow) 
and pyAV packages [15]. The import and export of csv data is imple
mented using the pandas package [16]. To run the source files, we 
recommend setting up a new Conda environment for Chronotate with 
these dependencies. All source files along with a precompiled executable 
file (.exe) are available from the Shuman Lab’s GitHub page (https://gi 
thub.com/ShumanLab/Chronotate). The precompiled .exe is a stand
alone application compatible with Windows and requires no installa
tion. The .exe has been successfully tested with Windows 10 & 11. (Note 
that due to GitHub’s handling of large files, cloning or downloading the . 
zip of the repository will result in a broken .exe. Therefore, the .exe must 
be downloaded separately, which can be done by following the link in 
the repository’s readme page.) The source files require Python 3.6–3.10 
and are cross-platform compatible with Mac, Linux and Windows. The 
source files have been successfully tested on Windows 10, macOS 
Monterey 12.3, and Ubuntu 18.04, and should also be compatible with 
other versions of these operating systems. 

2.5. Data analysis & statistics 

The marker output files from Chronotate were processed by a custom 
MATLAB script (available on the Shuman Lab’s GitHub) to quantify the 
total exploration time with the novel and familiar objects. The cumu
lative exploration with each object was calculated on a second-by- 
second basis to generate a curve of preference for the novel object 
over the course of the session. All statistical tests were carried out using 
GraphPad Prism 9. 

Fig. 3. Determining the time-course of object preference across the testing session. (A) Animals successfully learned to discriminate between the novel and familiar 
object-location pair during the test session (paired t-test p = 0.028, n = 8 animals), with animals showing a preference for the novel object-location. (B) Mean 
cumulative preference for the novel object over the course of the session (blue, left axis) and mean cumulative total object exploration time (pink, right axis). 
Preference for investigating the novel object-location peaks at approximately 45 s after the start of the session, which corresponds to an average combined 
exploration of both objects of 2.7 s. Shaded error bars represent SEM. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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3. Results 

We first show that Chronotate does not introduce a bias into the 
resulting preference scores. A set of 16 NOL behavior videos were each 
scored twice by a blinded experimenter, one using stopwatches and a 
second time using Chronotate. Preference scores were highly correlated 
(Fig. 2A: Pearson’s r = 0.99, p < 0.0001, n = 16 videos), indicating high 
agreement between the two scoring methods. 

One of the major benefits of using Chronotate to score NOR/NOL 
video data is the ability to review scoring between raters on a level that 
is more granular than standard approaches. Typically, inter-rater reli
ability on these tasks is compared by determining how similar final 
preference, or discrimination index, values are to each other, as we show 
in Fig. 2B (Pearson’s r = 0.93, p < 0.0001, n = 42 animals, comparing 
preference scores between two independent raters). Unfortunately, 
however, using this method to troubleshoot videos where two raters 
have low inter-rater reliability presents the challenge of determining 
where in the video a difference in scoring emerged. Fortunately, because 
Chronotate outputs each time-stamped exploration bout, the moments 
where two raters diverged in their scoring becomes easily identifiable 
(Fig. 2C, 2D). These portions of the video can then be isolated, reviewed, 
and re-scored as needed. The NOR/NOL tasks leverage rodent’s innate 
tendency to investigate a novel stimulus or location over a familiar one. 
As such, our mice trained in the NOL task showed a preference for 
investigating the novel object-location pair that emerged during the test 
session (Fig. 3A, paired t-test, p = 0.028, n = 8 animals; data from Chen 
et al. 2023 [13]). This indicates that the mice had a memory of the 
familiar object-location pair from the training session and were there
fore able to identify which object had moved. However, novelty is a 
time-limited phenomenon, and as a rodent spends increasing time in the 
arena on the testing day, the novelty of the moved object will, in theory, 
begin to diminish. Using Chronotate to log object exploration and 
preference on a cumulative bout-by-bout basis, we can see that mice 
showed a maximal preference for exploring the novel object-location 
after 2.7 s of total exploration, which occurred 45 s into the test ses
sion (Fig. 3B, n = 8 animals), and that as the mice begin to spend more 
time with the objects, this preference is diminished. 

4. Discussion 

Here, we describe Chronotate and provide examples of its utility for 
facilitating manual scoring of NOR and NOL behavior videos. In short, 
Chronotate is an open-source graphical user interface implemented in 
Python that allows the user to score behavior videos with keyboard 
strokes and outputs timestamped bouts of interest. We show that this 
time-stamped data can be used to isolate key events, for example, where 
two raters diverge in their scoring of the data (Fig. 2D). In addition, this 
time-stamped data can be used to determine if an object-location pref
erence may have been diminished by the duration of the testing session 
or the amount of total exploration (Fig. 3). 

An additional benefit of Chronotate is the ability to skip forward 
through portions of behavior videos in which an animal is not in prox
imity to an object of interest, reducing the amount of time raters must 
spend reviewing each video. However, a future add-on to this software 
could integrate open-source location tracking modules, such as the one 
implemented in ezTrack [10] to automatically direct the user to portions 
of the video in which the animal is close enough to interact with the 
object, requiring the rater to review only the timepoints when object 
interaction is possible. 

While we describe Chronotate’s utility for NOR/NOL videos, its po
tential applications far exceed this scope. Not only can Chronotate be 
adapted for the scoring of any videos requiring manual, time-stamped 
notation, but future refinements to automated behavior scoring tools 
will hopefully reduce the need to perform manual scoring of behavior 
videos. In this scenario, Chronotate may prove useful for generating 
labeled training data to be passed into supervised machine learning 

models in order to improve the identification of active object interaction 
bouts. 
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