
*For correspondence:

william.mau@mssm.edu (WM);

denise.cai@mssm.edu (DJC)

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 16

Received: 29 September 2020

Accepted: 12 December 2020

Published: 29 December 2020

Reviewing editor: Laura L

Colgin, University of Texas at

Austin, United States

Copyright Mau et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

The brain in motion: How ensemble
fluidity drives memory-updating and
flexibility
William Mau1*, Michael E Hasselmo2, Denise J Cai1*

1Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York,
United States; 2Center for Systems Neuroscience, Boston University, Boston, United
States

Abstract While memories are often thought of as flashbacks to a previous experience, they do

not simply conserve veridical representations of the past but must continually integrate new

information to ensure survival in dynamic environments. Therefore, ‘drift’ in neural firing patterns,

typically construed as disruptive ‘instability’ or an undesirable consequence of noise, may actually

be useful for updating memories. In our view, continual modifications in memory representations

reconcile classical theories of stable memory traces with neural drift. Here we review how memory

representations are updated through dynamic recruitment of neuronal ensembles on the basis of

excitability and functional connectivity at the time of learning. Overall, we emphasize the

importance of considering memories not as static entities, but instead as flexible network states

that reactivate and evolve across time and experience.

Introduction
Memories are neural patterns that guide behavior in familiar situations by preserving relevant infor-

mation about the past. While this definition is simple in theory, in practice, environments are

dynamic and probabilistic, leaving the brain with the difficult task of shaping memory representa-

tions to address this challenge. Dynamic environments imply that whatever is learned from a single

episode may not hold true for future related experiences and should therefore be updated over

time. If not, memory systems will fail to generalize to future retrieval episodes in which conditions

may have changed, leading to suboptimal behaviors (Richards and Frankland, 2017). Hence, the

‘goal’ of a memory system is not to remember individual events with the greatest possible precision,

but rather to continually adapt its contents in order to build more and more accurate models of the

world. To do this, the brain employs ‘memory-updating’, which we define as the process of modify-

ing existing firing patterns to support the integration of new information into previously learned

memories. Consistent with this concept, studies on reconsolidation have previously described how

memories can become labile during retrieval allowing for memory-updating (Dudai, 2012;

Misanin et al., 1968; Nader et al., 2000) and these memory modifications continue indefinitely over

an animal’s lifetime (Dudai, 2012; McKenzie and Eichenbaum, 2011; Nadel et al., 2012). While

reconsolidation studies have greatly contributed to our understanding of continual learning, these

studies typically rely on amnesic pharmacological agents that offer limited insight to how memory

modification occurs at the neurophysiological and population level. However, recent studies utilizing

approaches to observe and manipulate large-scale neuronal populations have reinvigorated the

search for the flexibility of memory traces (Box 1). Indeed, as we will describe in this review, these

observations support the concept of continual memory-updating and complement the findings

regarding molecular mechanisms in the reconsolidation literature (Tronson and Taylor, 2007).

Rather than discrete and fixed neural representations, we propose that memories are stored in
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flexible activation patterns that are continuously modified over experience, on the order of minutes

to lifetimes.

Stability versus flexibility in long-term memory
There is consensus that, generally speaking, memories are stored in activity patterns and synaptic

weights of neuronal ensembles brain-wide, and that these ensembles are reactivated when recalling

the memory (Frankland et al., 2019; Gelbard-Sagiv et al., 2008; Guzowski et al., 1999; Liu et al.,

2012; Reijmers et al., 2007; Wilson and McNaughton, 1993). These ensembles can persist over

long timespans measured over days to weeks, making them attractive substrates for long-term mem-

ory storage (Josselyn et al., 2015; Tonegawa et al., 2015). The foundation for these ideas

came from Donald Hebb, whose theories on synaptic plasticity and the stabilization of cell ensem-

bles laid the groundwork for contemporary ideas in memory representations within neuronal net-

works (Hebb, 1949). For instance, demonstrations of ensemble stability were found in hippocampal

place cells (pyramidal neurons that fire according to the animal’s position in space) (O’Keefe and

Nadel, 1978) that were found to be stable over many weeks (Thompson and Best, 1990). Stability

of neuronal ensembles was also supported by studies using localization of immediate-early gene

expression in the hippocampus—exploration of two identical environments 20 min apart induced

activity-dependent Arc expression in highly overlapping populations of CA1 neurons

(Guzowski et al., 1999). In the amygdala, reactivation of a neuronal ensemble active during learning

was correlated with memory recall several days later, indicating a stable neural correlate for fear

memory (Reijmers et al., 2007). Based on these and related studies, modern theories suggest that

dedicated populations of neurons (‘engram cells’) encode and store memories in the manner of a

Hebbian cell ensemble (Hebb, 1949; Josselyn et al., 2015; Tonegawa et al., 2015).

While groundbreaking, the discovery of stable ensembles as substrates for memories is an incom-

plete account of how memory systems operate over the course of an animal’s lifetime. Above all,

these principles do not explain how the brain can integrate new experiences with old memories. In

practice, some degree of flexibility must complement persistence in the successful implementation

of memory (Richards and Frankland, 2017). The ‘stability-plasticity dilemma’ describes the neces-

sary compromise between these two opposing forces, allowing new learning to occur while preserv-

ing existing knowledge (Grossberg, 1982). Indeed, modeling studies have shown that an overly

rigid neural network actually encumbers the acquisition of new information. In an inflexible network,

existing knowledge can interfere with the encoding of new information (proactive interference) and

is also subject to erasure during new learning (catastrophic forgetting) (Hasselmo and Wyble, 1997;

McClelland et al., 1995; McCloskey and Cohen, 1989). Therefore, in addition to understanding

how memories can persist in neural populations, it is equally important to understand how memory

systems can overcome collisions between old and new memories. To that end, dynamic memory

ensembles encapsulate how memories can be both persistent and fluid. This idea is in line with the

research on reversal learning (Izquierdo et al., 2017), reconsolidation (McKenzie and Eichenbaum,

2011), schema learning (Bartlett, 1932; Gilboa and Marlatte, 2017; Tse et al., 2007), and systems

consolidation (Kumaran et al., 2016; McClelland et al., 1995; Nadel et al., 2012), which all

describe how previously learned behaviors can be modified to accommodate new learning. In partic-

ular, prominent theories on systems consolidation stress the importance of both persistence and

flexibility—the hippocampus is often thought of as the flexible learner that trains neocortical net-

works to store memories long term (McClelland et al., 1995). However, neocortical networks still

undergo continual modifications as the animal learns over a lifetime (Kumaran et al., 2016).

Although much is known about the flexibility of behaviors, we know much less about how the

memories enabling those behaviors are updated at the neurophysiological level. While the flexibility

of memory has been well appreciated in synaptic neurobiology (Holtmaat and Svoboda, 2009;

Rumpel and Triesch, 2016; Ziv and Brenner, 2018) and cognitive psychology (Nadel et al., 2012),

it has been largely neglected by neurophysiologists with a few recent notable exceptions

(Chambers and Rumpel, 2017; Clopath et al., 2017 ; Richards and Frankland, 2017; Rule et al.,

2019). We begin by highlighting recent longitudinal observations of slow fluctuations in neural activ-

ity and synaptic structure that complement the ‘stable engram’ hypothesis (Josselyn et al., 2015;
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Tonegawa et al., 2015). Intrinsic fluctuations that alter synaptic connectivity and cellular excitability

provide an ever-present reservoir of flexibility in population activity patterns to store a memory. We

propose that these slow fluctuations act like a conveyor belt that continuously supplies potential

new storage sites of future memories, as suggested by previous studies on ’memory

allocation’ and ’memory-linking’ (Cai et al., 2016; Josselyn and Frankland, 2018; Rashid et al.,

2016; Yokose et al., 2017). Neurons encoding these future experiences may overlap with existing

engrams, updating past memories. In the following section, we describe how ‘unstable’ ensembles

are not in fact paradoxical, but instead are necessary for flexible memory and behavior. Then, we

outline the steps of the memory-updating process which entails (1) a partial reactivation of a previ-

ously formed engram, (2) recruitment of neuronal populations into existing engrams based on their

excitability and functional connectivity, (3) deployment of plasticity processes that modify these net-

works by integrating the new population, and (4) temporal coordination of neural activity within and

across regions for brain-wide memory-updating.

The benefit of dynamism: how drift aids memory flexibility
Representational drift: findings from neurophysiology
With the advent of functional imaging methods that can enable longitudinal tracking of single neu-

rons over days to weeks, a picture is starting to emerge that memory representations are not as

fixed as we might expect. Despite experimenters’ efforts to keep external environments consistent

and with no observed changes in the animal’s behavior, the firing patterns of neuronal populations

continue to evolve, a phenomenon known as ‘representational drift’ (for reviews see Chambers and

Rumpel, 2017; Clopath et al., 2017; Rule et al., 2019). Repeated exposures to the same conditions

produce neural representations of these highly familiar experiences that nonetheless fluctuate on

the order of hours to weeks, even with stereotypical behavior. For instance, hippocampal ensemble

activity deviates over time, as measured by population vector correlations to a reference point,

despite no deviations in the behavioral task (Figure 1a and b; Bladon et al., 2019; Hainmueller and

Bartos, 2018; Mankin et al., 2012; Manns et al., 2007; Mau et al., 2018; Rubin et al., 2015;

Ziv et al., 2013). Similar fluctuations have been reported in barrel cortex (Margolis et al., 2012),

motor regions (Liberti et al., 2016; Peters et al., 2017; Rokni et al., 2007), lateral entorhinal cortex

(Tsao et al., 2018), and parietal cortex (Driscoll et al., 2017), suggesting that while all these regions

differentially contribute to memory, drift may be a ubiquitous feature of neural systems that seems

to threaten memory stability. Alternatively, drift could actually reflect the inherent flexibility of the

neural code and stem from numerous parallel neurobiological processes including spontaneous syn-

aptic remodeling (Ziv and Brenner, 2018), and dynamic changes in cellular excitability

(Figure 1c and d; Chen et al., 2020; Slomowitz et al., 2015). Next, we will consider how these

processes could potentially contribute to the way in whichdynamic neural codes can support mem-

ory flexibility.

Synaptic turnover: contributions to representational drift
Synapses are constantly being remodeled, which could be one underlying factor for drift in ensem-

ble codes (Buzsáki, 2010; Rumpel and Triesch, 2016; Ziv and Brenner, 2018). While neural activity

is a well-known mediator of synaptic plasticity (Bi and Poo, 1998; Bliss and Collingridge, 1993), the

reverse relationship is also possible—synaptic structure and weights could influence neural activity

patterns (Buzsáki, 2010; Fauth et al., 2015; Kalle Kossio et al., 2020; McKenzie et al., 2019;

Turrigiano and Nelson, 2004). Along those lines, when action potentials are blocked in cell cultures,

synapses continue to turn over across days, demonstrating that spontaneous synaptic remodeling

occurs even in the absence of neuronal firing, and that these intrinsic remodeling events could

impact the participation of individual neurons within ensembles (Minerbi et al., 2009;

Yasumatsu et al., 2008). Hippocampal dendritic spines have been found to completely turn over

within weeks, presumably contributing to fluctuations in neuronal firing patterns via rearrangement

of synaptic weights (Attardo et al., 2015; Pfeiffer et al., 2018). Supporting this possibility, one

experiment described how local activity patterns at CA1 dendrites predicted longitudinal place field

stability based on somatic calcium activity. The experimenters found that place cells were more likely

to lose their field if the dendritic activity of those cells was more variable on a trial-by-trial basis

(Sheffield and Dombeck, 2015). This suggests that the computations occurring in dendritic

Mau et al. eLife 2020;9:e63550. DOI: https://doi.org/10.7554/eLife.63550 3 of 24

Review Article Neuroscience

https://doi.org/10.7554/eLife.63550


compartments could be disturbed by synaptic turnover, which in turn could potentially destabilize

place fields across the whole population. Recent modeling efforts have shown that synaptic turnover

can give rise to drifting ensembles (Kalle Kossio et al., 2020). However, direct evidence for synaptic

turnover as a major source for representational drift has not yet been shown and would require tech-

nically challenging feats of simultaneously imaging spines and somatic activity over long timescales.

Stable memories from tenacious networks
While seemingly disruptive, there is substantial evidence that constant flux does not preclude mem-

ory persistence. Although dendritic spines are routinely formed and eliminated, a significant propor-

tion is estimated to persist over an animal’s lifetime (Yang et al., 2009), suggesting that long-term

memories could be stored in the synapses located at those spines. These persistent spines are more

common in the neocortex than in the hippocampus (Attardo et al., 2015), consistent with systems

consolidation theories suggesting that neocortical networks play a larger role in storing

relatively more stable representations. Nonetheless, up to 15–25% of hippocampal CA1 neurons

retain the same spatial firing patterns across weeks, which is sufficient for accurate spatial decoding

(Shuman et al., 2020; Ziv et al., 2013). Such patterns may persist in part due to the relatively high

resilience of larger dendritic spines (Holtmaat and Svoboda, 2009; Holtmaat et al., 2005), which

has been observed in both hippocampal (Pfeiffer et al., 2018) and neocortical spines (de Vivo

et al., 2017). Additionally, modeling work has suggested that repeated offline reactivation of spe-

cific ensembles could maintain potentiated synaptic weights (Fauth and van Rossum, 2019). Thus,

long-term memories may be supported by a ‘backbone’ of stable spines and neurons that

store gross features while the remainder might continually undergo plasticity to encode more

detailed representations (Buzsáki and Mizuseki, 2014; Grosmark and Buzsaki, 2016;

Sweeney and Clopath, 2020). A complementary ‘memory indexing’ theory has proposed that hip-

pocampal neurons reinstate neocortical activity patterns for memory retrieval (Goode et al., 2020;

Tanaka et al., 2018; Teyler and DiScenna, 1986). In such a regime, neocortical storage sites may

house relatively more stable memories that hippocampal computations incrementally modify

(Kumaran et al., 2016).

Even with the stability of a ‘backbone’ neural network, a nontrivial portion of neural networks is

dynamic. Still, this does not appear to hinder memory or behavior. Performance on a variety of

Box 1. Large-scale neuronal population recordings for
studying memory.

Rapid advances over the last several decades have enabled researchers to record the activity of

large populations of neurons (usually in rodents, non-human primates, and rarely humans) and relate

this activity to mnemonic processes. Multielectrode drives can be chronically or acutely inserted

into the brain to measure spiking from many single units through extracellular voltage. Optical tech-

niques such as calcium imaging can monitor fluorescence from calcium indicators expressed in hun-

dreds of neurons simultaneously. Researchers when faced with these large neuronal populations

have turned to computational analyses to correlate neural activity with ongoing behavior (for a

review see Cunningham and Yu, 2014). As a basis for many of these analyses, the researcher may

construct ‘population vectors’ from the neural data. Typically, these vectors will describe the activity

rate of each neuron binned with respect to some other variable. For example, a common way to

create population vectors from hippocampal place cells is to count spikes for each recorded neuron

when the animal is traversing a (binned) spatial location. These population vectors comprise an N

� S matrix where N is the number of neurons, S is the number of spatial bins, and each element in

the matrix is firing rate. From these data, a researcher could search for activity patterns that may be

indicative of memory encoding and retrieval processes. Key findings from this approach have identi-

fied hippocampal spiking patterns that correlate with spatiotemporal aspects of experience

(Buzsáki and Moser, 2013; Buzsáki and Tingley, 2018; O’Keefe and Dostrovsky,

1971; Pastalkova et al., 2008), reactivate during memory retrieval (Foster, 2017; Joo and Frank,

2018; Lee and Wilson, 2002) and can be causally linked to behavior (Robinson et al., 2020).
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Figure 1. Representational drift and intrinsic dynamics supply neural substrates for memory-updating over time. (a) Example tuning curves of a

neuronal population changing its firing patterns over time with respect to an arbitrary external variable (e.g. spatial location) (Mau et al., 2018;

Ziv et al., 2013). Each column corresponds to a certain point in time. Some neurons will lose their field while others gain one. This occurs even when

the animal is performing stereotyped behavior (Chambers and Rumpel, 2017; Rokni et al., 2007; Rule et al., 2019). (b) Schematic of population

similarity over time. As a result of (a), the similarity of population activity to time t decreases over time (Mankin et al., 2012; Mau et al., 2018;

Ziv et al., 2013). (c) Schematic of fluidity in ensembles. Intrinsic fluctuations that result in increased excitability in certain neurons (light green circles)

bring them up to par with the currently active ensemble (dark green circles) relative to non-active ensembles (white circles). These ‘incoming’ neurons

become more likely to encode future memories (Rogerson et al., 2014). At the same time, other ‘outgoing’ neurons lose their association with the

network or their synapses are pruned to make room for the incoming cells. (d) Schematic of dynamic synapses. Even in the absence of neuronal activity,

synapses are known to be continuously formed and eliminated (Minerbi et al., 2009; Yasumatsu et al., 2008), meaning this is an intrinsic process that

occurs regardless of input. Perhaps the underlying source of drift at the population level is intrinsic synaptic volatility (Holtmaat and Svoboda, 2009;

Ziv and Brenner, 2018).
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spatial navigation tasks remained stable across days despite continuous reorganization of firing pat-

terns in parietal cortex and hippocampus (Driscoll et al., 2017; Kinsky et al., 2020; Levy et al.,

2020). Most surprisingly, motor patterns are unchanged despite drift in neural activity from motor

areas (Liberti et al., 2016; Rokni et al., 2007, but see Katlowitz et al., 2018). Perhaps behavioral

stability could be attributed to the consistency of the overall population regardless of the activity of

individual neurons (Rule et al., 2020). Others have shown that from a population standpoint, the var-

iability of any individual neuron is inconsequential to the fidelity of the overall neural code

(Gallego et al., 2020; Gonzalez et al., 2019; Rokni et al., 2007; Rule et al., 2019; Rule et al.,

2020). A recent study proposed that downstream readers can hypothetically compensate for drift,

suggesting that as long as the interpreter of an upstream neural code is capable of re-weighting its

inputs, a stable readout can still be achieved (Kalle Kossio et al., 2020; Rule et al., 2020).

Although the neurobiological principles governing this re-weighting have yet to be determined,

they may hinge upon neuromodulatory feedback signals such as dopamine or acetylcholine

(Duszkiewicz et al., 2019; Hasselmo, 2006). Taken together, these studies indicate that memory

retrieval can tolerate some degree of dynamism provided that some core backbone of the collective

network remains intact or if downstream readers adjust their outputs in accordance with their fluctu-

ating inputs.

Drift as a mechanism for continuous remodeling
What is the function of drift in memory systems? We posit that drift can slowly and stochastically pro-

vide neural substrates that can bind new information (Rumpel and Triesch, 2016), both for forming

new memories and for updating old ones. In order to form new memories or update past memories,

neural networks are faced with the formidable problem of having to potentiate the appropriate syn-

aptic patterns among the huge number of possibilities that make up the synaptic connectivity space.

Structural synaptic turnover through continuous spine degradation and formation could facilitate

future learning by maximizing sampling across this synaptic connectivity space (Frank et al., 2018;

Holtmaat and Svoboda, 2009; Kappel et al., 2015; Minerbi et al., 2009; Rumpel and Triesch,

2016; Xu et al., 2009), increasing the likelihood of achieving certain spiking patterns, and ultimately

potentiating their corresponding synaptic weights. Consistent with this logic, spine turnover is critical

for birdsong acquisition, fear conditioning, and spatial navigation in zebra finches and mice (Cas-

tello-Waldow et al., 2020; Frank et al., 2018; Roberts et al., 2010). Frank et al., 2018 measured

spine turnover in the mouse retrosplenial cortex and found that turnover rates, even before fear con-

ditioning and spatial exploration, positively correlated with individual ability to learn each memory.

In other words, high spine turnover rates provided a greater number of new spines available for

memory encoding but may have also enabled faster sampling across synaptic space and therefore a

quicker arrival to a synaptic connectivity pattern that adequately encoded the new information (Cas-

tello-Waldow et al., 2020; Frank et al., 2018; Rumpel and Triesch, 2016; Xu et al., 2009).

Changes in synaptic connectivity could also heterogeneously influence the likelihood of spiking

(intrinsic excitability) in neuronal subpopulations, which would in turn increase their likelihood of par-

ticipating in future memory-encoding ensembles (i.e., memory allocation; Box 2; Buzsáki, 2010;

Chen et al., 2020; Rogerson et al., 2014; Yiu et al., 2014; Zhou et al., 2009). In this way, the brain

could prioritize different rosters of neurons to diversify eligibility for memory encoding or updating

(Margolis et al., 2012; Rogerson et al., 2014; Trouche et al., 2016). Such a framework is consistent

with systems consolidation where information is constantly redistributed across the neocortical-hip-

pocampal loop (Kumaran et al., 2016; McClelland et al., 1995). In summary, spontaneous synaptic

remodeling can supply additional synapses and neurons in which memories can be laid down as they

are being experienced, contributing to memory flexibility.

Neurogenesis and plasticity aid memory-updating
Drift may also facilitate the updating of previously learned memories by partially weakening old

activity patterns in favor of strengthening new ones. In particular, hippocampal adult neurogenesis

has been shown to play an important role in synaptic and circuit remodeling, supporting memory-

updating and flexibility (Aimone et al., 2009; Burghardt et al., 2012; Denny et al., 2014;

Epp et al., 2016; Frankland et al., 2013; Rangel et al., 2014; Richards and Frankland, 2017;

Saxe et al., 2006). The addition of newborn neurons in the dentate gyrus reconfigures existing

Mau et al. eLife 2020;9:e63550. DOI: https://doi.org/10.7554/eLife.63550 6 of 24

Review Article Neuroscience

https://doi.org/10.7554/eLife.63550


hippocampal activity by decaying previously potentiated synapses (Alam et al., 2018;

Frankland et al., 2013; Kitamura et al., 2009). At first glance, this may appear disruptive for mem-

ory, but integration of these newborn neurons into hippocampal circuits can be useful because net-

work-wide synaptic reorganization can erase obsolete patterns while making room for new ones

(Alam et al., 2018; Frankland et al., 2013; Richards and Frankland, 2017; Toni et al., 2008). This

feature is especially advantageous for memory-updating, which requires circuit reconfiguration in

order for previous memories to accommodate potentially conflicting new information. In alignment

with this hypothesis, exercise and environmental enrichment (which both increase neurogenesis)

enhanced navigational flexibility when a goal was relocated (Epp et al., 2016; Garthe et al., 2016).

In these studies, mice with increased neurogenesis were better able to learn by modifying their

expectations of where the goal was likely to be, but this ability was abolished when neurogenesis

was inhibited (Burghardt et al., 2012; Epp et al., 2016; Garthe et al., 2016). Importantly, neuro-

genesis was not required for initial memory acquisition, but only when the mice had to reverse their

behavior (Burghardt et al., 2012; Epp et al., 2016). This suggests that neurogenesis plays an impor-

tant role in memory-updating, and not just in acquisition of a new memory (Meshi et al., 2006).

Taken together, these findings suggest that after integration of adult-born neurons, the consequent

synaptic reorganization (Toni et al., 2008) allows experienced brains to acquire yet more information

to integrate with previously learned associations.

Aside from neurogenesis, spontaneous synaptic remodeling is a critical feature for permitting

memory-updating through the exploration of synaptic connectivity space using prior knowledge as a

starting point. Modeling studies have demonstrated that continual reconfiguration of synaptic

weights is necessary for a network to adapt once dynamic conditions are imposed (Ajemian et al.,

2013; Duffy et al., 2019; Kappel et al., 2018). One particular study used a neural network to per-

form a simulated motor task where specific outputs were rewarded (Kappel et al., 2018). The

authors then changed the output of a subset of model neurons relative to the motor task, thereby

perturbing the neural network’s ability to produce the correct motor actions. However, because the

neural network was able to continuously explore alternative solutions through a drift-like synaptic

rewiring mechanism, it quickly adapted to the perturbation and regained high accuracy

(Kappel et al., 2018). This suggests that slow synaptic turnover may facilitate the ability to draw

from a prior knowledge base (by storing connectivity patterns that are slow to decay) while still flexi-

bly exploring related options through stochastic probing of new potential connectivity patterns, built

atop existing ones. Such an implementation may underlie flexible behaviors that are based on mem-

ories for past outcomes. In other words, as long as a memory is retrievable and the ensemble encod-

ing that memory is sufficiently plastic, it can be updated; but suppressing retrieval (Yokose et al.,

2017) or plasticity (Guo et al., 2018) blocks memory-updating. The notion of memory modification

after retrieval has also been previously discussed in the context of reconsolidation, when memories

are subject to modification after they are retrieved (Dudai, 2012; McKenzie and Eichenbaum,

Box 2. Neuronal excitability and memory allocation.

The memory allocation hypothesis states that neurons with high excitability are more likely to be recruited for memory encoding

(Rogerson et al., 2014). Experimental excitation of subpopulations of amygdala neurons biases fear memory storage to those

cells, and ablation of that subpopulation abolishes the memory while activation of that subpopulation induces memory retrieval

(Han et al., 2007; Rogerson et al., 2016; Yiu et al., 2014; Zhou et al., 2009) In CA1, place cells (as opposed to non-place cells)

exhibit electrophysiological properties indicative of high excitability such as lower spiking thresholds (Epsztein et al., 2011) and

artificial excitation endows non-place cells with place fields (Bittner et al., 2015; Diamantaki et al., 2018; Lee et al., 2012).

Also in CA1, c-fos-positive populations that distinguish between spatial contexts similarly show high mean firing rates

(Tanaka et al., 2018). In other brain regions such as prefrontal cortex and nucleus accumbens, highly excitable cells have been

found to be critical for reproduction of certain behaviors such as conditioned freezing and reward seeking (Whitaker et al.,

2017; Ziminski et al., 2017), demonstrating their role in stable memory encoding and retrieval. In humans, excitability

during pre-encoding also appears to predict subsequent memory encoding strength (Urgolites et al., 2020).
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2011; Misanin et al., 1968; Nader et al., 2000). In the next section, we examine how the brain

modifies these memories.

Neural mechanisms of memory-updating
Memory retrieval is associated with a re-visitation of neural state space
There is a large body of evidence showing that memories are not created de novo and instead draw

upon prior knowledge stored in biophysical configurations of synapses and population activity

(Bliss and Collingridge, 1993; Dragoi and Tonegawa, 2014). As such, memory-updating relies on

instantiating an internal representation of past events, comparing expectations to current sensory

input, and modifying the representation to improve predictive power (Gershman et al., 2017). For

example, in humans, viewing specific images reactivates the firing patterns observed during initial

presentation of the stimulus (Gelbard-Sagiv et al., 2008). In rodents, similar neuronal populations

are reactivated upon re-exposures to familiar environments (Guzowski et al., 1999; Reijmers et al.,

2007; Rubin et al., 2015; Shuman et al., 2020; Thompson and Best, 1990; Ziv et al., 2013), and

activation of neuronal populations previously activated during the initial learning will induce memory

retrieval (Liu et al., 2012; Ramirez et al., 2013; Robinson et al., 2020).

Reactivation of neural patterns during memory retrieval may constrain the brain to these state

spaces, restricting the degrees of freedom for exploring possible solutions for new encoding. These

states may act as continuous attractors (Leutgeb et al., 2005; Tsodyks, 1999; Wills et al., 2005)

and function as workspaces for memory-updating within that time window (Figure 2). Such a mecha-

nism would imply that learning something associated with a previously learned stimulus would reacti-

vate that previous memory. This view is again consistent with reconsolidation experiments where a

reminder cue reinstates a previous memory, creating an opportunity for modification of that memory

(Gisquet-Verrier et al., 2015; Hupbach et al., 2007; McKenzie and Eichenbaum, 2011;

Nadel et al., 2012). Functional imaging experiments in the human brain found that presentations of

reminders triggered reactivation of hippocampal and prefrontal networks, which facilitated learning

of new, related items (Schlichting and Preston, 2014; Zeithamova et al., 2012). Rodent studies

have also found reactivation of hippocampal ensembles during memory-updating (Dupret et al.,

2010; McKenzie et al., 2013; McKenzie et al., 2014). Previous training on memory tasks with one

set of stimuli accelerated their ability to form new associations with different stimuli. Upon introduc-

tion of these new stimuli, neurons that encoded previous, related stimuli were reactivated, suggest-

ing that this population acted as a scaffold upon which new, related stimuli were embedded

(McKenzie et al., 2013; McKenzie et al., 2014). This reactivation facilitates the connection of

related experiences across time, allowing for the integration of events through the co-activation of

neurons encoding past and present experiences. Such a mechanism is consistent with reports of

optogenetic stimulation to co-activate ensembles to update previous memories with experimenter-

defined ‘false memories’ (Ohkawa et al., 2015; Ramirez et al., 2013; Vetere et al., 2019).

Memory-updating through temporal integration
To determine which experiences get integrated into a past memory, the relevance of input patterns

might be weighted by temporal proximity to when the memory was encoded—events that occur

close in time can become linked within neural networks (Clewett et al., 2019; Howard et al., 2014;

Rogerson et al., 2014; Schlichting and Preston, 2014; Yetton et al., 2019). A functional imaging

study in humans found that over two encoding episodes, subjects were more likely to combine their

memories of overlapping items (object pairs) if they occurred within 30 min of each other

(Zeithamova and Preston, 2017). Within encoding episodes (defined by minutes-long temporal

blocks), there is high similarity in hippocampal activity patterns in both humans (Ezzyat and Davachi,

2014; Hsieh et al., 2014) and rats (Bulkin et al., 2020), suggesting that the network resides in the

same state space during these episodes. Likewise in mice, two contextual experiences within 5 hr of

each other became represented by a common set of hippocampal CA1 neurons, but not when they

were separated by 7 days (Cai et al., 2016). Furthermore, not only were those two experiences rep-

resented by an overlapping ensemble, but when one of those contexts was subsequently paired

with shock, animals transferred the fear from the shocked context to the neutral context. This indi-

cates that the two memories became linked, which was sufficient to update a recent neutral memory

with an aversive association (Cai et al., 2016). In another study, mice were fear conditioned with two
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different tones, separated by 6 hr, and these two tone-shock associations were represented in the

amygdala by a common set of neurons (Rashid et al., 2016). When one of the tones was repeatedly

presented without shock (a paradigm known to lead to extinction of freezing), it also reduced freez-

ing for the other tone, suggesting that the two memories became linked within those 6 hr. These

effects were not seen when longer time intervals separated the two encoding events. Yet another

study was able to link a conditioned taste aversion to a fear conditioned response through an over-

lapping population encoding the two conditioned stimuli (Yokose et al., 2017). These ‘temporal

memory-linking’ studies demonstrate that events occurring in close temporal proximity can mutually

impact and modify memory representations of surrounding events.

Memory 1

“workspace”

Memory 

reactivations

Memory 2

“workspace”

Figure 2. Memory representations occupy regions of state space during experience and learning. Example

trajectories of network states during recollection of two memories, depicted on a neural subspace. The network

state is expressed in the firing activity of large neuronal populations. During situations where the environment or

context is relatively stationary, the network state exhibits slow drift that constrains learning and plasticity locally

(dotted black circles). Upon a major contextual shift, the network state responds with a fast, commensurate shift to

a new regime (from Memory 1 to Memory 2, green trajectory) that recalls another memory. The network

resides there until another contextual shift kicks it back to Memory 1. In experimental conditions, these contextual

shifts are usually experimenter-defined (e.g., placing animals in different enclosures). However, in the wild, they

may be shaped by major changes in the animal’s surroundings. In humans, and probably in non-human animals as

well, contextual shifts may be internally motivated (i.e., spontaneous recall). Compartmentalization in network state

space ensures that learning does not corrupt existing memories while allowing mechanisms for memory

modification within local state space regions.
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Excitability and synaptic dynamics ensure a constant supply of neurons
for memory-updating
During memory-updating, how does the network determine which neurons are integrated into an

existing memory? Accumulating evidence indicates that excitability and functional connectivity influ-

ence the allocation of neurons into memory ensembles. This theory, known as the ‘memory alloca-

tion hypothesis’, suggests that the excitability of a neuron predisposes it for encoding a memory

(Box 2; Rogerson et al., 2014; Zhou et al., 2009). Moreover, the excitability and connectivity of

neuronal populations are constantly changing, which would suggest that different sets of neurons

encode or update memories as these neurons increase in prominence from the perspective of the

network (Buzsáki, 2010; Chen et al., 2020; Minerbi et al., 2009; Slomowitz et al., 2015). In other

words, drift, as a result of constantly fluctuating excitability (Chen et al., 2020; Rogerson et al.,

2014; Slomowitz et al., 2015), synapses (Holtmaat and Svoboda, 2009; Rumpel and Triesch,

2016; Xu et al., 2009; Yang et al., 2009; Ziv and Brenner, 2018), and intracellular proteomes

(Rogerson et al., 2014), define the degree to which single neurons compete to participate in encod-

ing a memory (Han et al., 2007) based on their excitability and connectivity to an existing memory

engram.

During memory-updating, in order to homeostatically maintain ensemble sizes (Stefanelli et al.,

2016), other neurons must also decrease their roles in memory encoding, ‘exiting’ the ensemble by

reducing their contribution to the memory representation (Figure 1c). Because synaptic potentiation

is saturated in engram neurons (Choi et al., 2018), a neuron’s exit from an ensemble might reflect

depotentiation, reducing its likelihood of being co-activated with the remainder of the ensemble

and potentially allowing it to encode other information. Depotentiation could result from a new com-

peting ensemble suppressing the activity of neurons from a previous ensemble (Han et al., 2007;

Rashid et al., 2016). For example, ensembles formed during extinction may be inhibiting ensembles

formed during fear learning (Lacagnina et al., 2019). As secondary evidence, optogenetic inhibition

of an engram results in recruitment of an alternative engram (Rashid et al., 2016;

Schoenenberger et al., 2016; Trouche et al., 2016), implying that the ensemble that might have

been ‘next in line’ to compete with the first acts as a fail-safe to encode the present experience,

ensuring functional homeostasis. Such competition may also underlie the loss of firing selectivity (e.

g., receptive fields) over time in some neurons, decreasing their contribution to reliable memory

encoding of the original memory (Liberti et al., 2016; Mankin et al., 2012; Manns et al., 2007;

Mau et al., 2018; Rubin et al., 2015; Sheffield and Dombeck, 2015; Trachtenberg et al., 2002;

Ziv et al., 2013). The gradual departure of those neurons may allow a transition to another set of

neurons that surface with new information to integrate into the existing memory.

During memory-updating, memory allocation on the basis of neuronal excitability promotes the

overlap between ensembles encoding memories close in time. High excitability biases neurons

encoding one memory to be recruited to encode another event, thereby linking the two memories

through a shared neuronal ensemble (‘allocate-to-link’ hypothesis) (Cai et al., 2016; Rashid et al.,

2016; Rogerson et al., 2014). But how could associations be made between experiences that are

more temporally distant? One possibility is through ensemble reactivation during memory retrieval,

which prepares an old ensemble to integrate new ensembles (Yokose et al., 2017). Because mem-

ory retrieval involves a reactivation of a neuronal ensemble, excitation of those cells could trigger a

physiological state that primes them for integrating the activity patterns of new neurons into their

network. In line with this idea, learning increases neuronal excitability (Chandra and Barkai, 2018;

Disterhoft et al., 1986). Early studies found that eyeblink conditioning (Disterhoft et al., 1986) and

operant conditioning (Saar et al., 1998) increased neuronal excitability in CA1 and piriform cortex

by decreasing the magnitude of slow after-hyperpolarizations (due to decreases in the calcium-

dependent hyperpolarization current that follows spike bursts). Additionally, recent experiments

have shown that during encoding and retrieval episodes, excitability is elevated in specific popula-

tions—the engram cells (Cai et al., 2016; Pignatelli et al., 2019). By reactivating these engram cells

during memory retrieval, they become re-excited along with newly excited cells at the next encoding

event, which could induce synaptic potentiation between these ensembles (Abdou et al., 2018;

Choi et al., 2018; Nabavi et al., 2014). In doing so, this would combine memories that are related

in content (yet encoded distant in time) in a common set of neurons. Simply put, the brain could

recruit neurons encoding new information to fire alongside engram cells into an ensemble that now
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incorporates elements of new and old firing patterns (Ohkawa et al., 2015). This modified ensemble

then represents the updated memory.

Pre-existing temporal motifs influence neuronal recruitment patterns
While excitability could determine the identity of the neurons to be recruited into an ensemble dur-

ing memory-updating, pre-existing firing patterns (i.e., functional connectivity) at the time of encod-

ing could mediate the temporal structure of the new neural motif destined for eventual potentiation

(Dragoi and Tonegawa, 2014; McKenzie et al., 2019). The temporal structure of spiking patterns

could then be interpreted by downstream reader regions (Buzsáki and Tingley, 2018). An observed

phenomenon that supports the hypothesis of pre-existing temporal patterns is hippocampal ‘pre-

play’ (Figure 3a). Preplay refers to an ensemble of CA1 neurons that produces reliable sequential

activity prior to spatial learning, which is then recapitulated by firing in the same order while explor-

ing physical space (Dragoi and Tonegawa, 2011; Dragoi and Tonegawa,

2014, but see Silva et al., 2015). This finding again implies that memory representations are not

created de novo and instead that pre-existing functional connections and premature synaptic pat-

terns can become potentiated by experience (Figure 3b). That is, there is always likely to be a neu-

ronal sequence that occurs more often than others by virtue of the current state of synaptic

connectivity (Buzsáki and Mizuseki, 2014), and this sequence becomes most likely to encode the

next upcoming memory. In this way, the current state of the network as it drifts is connected to

ongoing experience through the storage of information in neuronal ensembles with precise temporal

coordination.

Neural sequences derived from preplay templates may undergo cyclical refinement, consistent

with our views on continuous memory-updating and how pre-existing temporal structure can shape

the patterns that emerge. Once a preplay pattern is potentiated, increasing its occurrence rate, it is

considered to be ‘replay’ (Dragoi, 2020; Foster, 2017; Liu et al., 2019) and it is likely that replay

patterns could then take on the role of preplay templates to integrate upcoming, related events

(Dragoi, 2020). Modification of these sequence templates would therefore be an efficient mecha-

nism for flexibly learning new information that is consistent with pre-established networks, without

the need for widespread restructuring (McClelland et al., 2020). In support of this idea, pre-existing

sequences are relatively preserved after learning but reorganization is still apparent; new neurons

are added to a backbone sequence after spatial exploration (Grosmark and Buzsaki, 2016;

Figure 3c). One study investigated the properties of neurons that begin to co-fire with an estab-

lished sequence after spatial exploration of a novel environment (Grosmark and Buzsaki, 2016).

This study found that newly recruited neurons contained higher spatial information, suggesting that

the neurons that are most informative about spatial regularities in the environment are preferentially

added to specific positions along the sequence. Moreover, consistent with the memory allocation

theory, the neurons that were recruited tended to have higher firing rates than those that were not

(Fernández-Ruiz et al., 2019; Grosmark and Buzsaki, 2016). Finally, the recruitment of neurons is

dependent on the degree of temporal coordination between those neurons both prior to and during

experience, demonstrating that functional connectivity among the ensemble participants is critical

for recruitment (Farooq and Dragoi, 2019; Farooq et al., 2019). Thus, both excitability and func-

tional connectivity bias the composition and temporal coordination of recruited neurons during

memory-updating. But to actually induce physical changes in the synaptic strengths of these ensem-

bles, the brain must modify synapses using plasticity proteins in concert with temporally coincident

neural activity.

Deployment of plasticity proteins enables subsequent synaptic
potentiation of new ensembles
How do slowly drifting synaptic configurations and spiking patterns actually stabilize to store infor-

mation? One major factor is the upregulation of experience-dependent plasticity, which can tempo-

rarily stabilize memory ensembles. Experience-dependent plasticity can then potentiate activity

patterns of memory ensembles to allow for those patterns to be retrieved for the next time they are

to be updated. Indeed, there is enhanced expression of plasticity-related proteins such as cAMP

responsive element binding protein (CREB) in numerous brain regions following memory retrieval

and updating (Hall et al., 2001). Artificial memory retrieval, through activation of engram cells,
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Figure 3. Preconfigured synaptic weights and excitability bias the allocation of memories to certain neuronal populations. (a) Prior to an encoding

event, some neurons will happen to be at the higher end of a distribution of excitability (red circles). These cells may be synaptically connected with

each other, or receive shared input from upstream regions (e.g., CA1 receiving input from CA3; cyan boutons with bouton size representing synaptic

weight) that result in high functional connectivity (dashed lines). Other cells may also be receiving input but have low excitability (empty circles). (b)

During learning, these highly excitable cells increase their functional connectivity (bold lines connecting red circles) through synaptic plasticity. This

could be achieved through potentiation of direct synaptic connections in the case of recurrent brain regions (e.g., CA3), or through potentiation of

synapses in upstream regions that achieve appropriately timed co-activation of downstream (e.g., CA1) ensembles. (c) Over time, synaptic weights may

weaken but some may persist to allow partial reactivation of a prior ensemble during memory recall (red circles). At the same time, just as in (a), a new

population of cells may exhibit above-average excitability and functional connectivity (blue circles and dashed lines) at the time of a second learning

episode. (d) Learning may potentiate functional connections between the red and blue ensembles to link the two memories.
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triggers plasticity in those cells and memory modification at the behavioral level. For instance, after

fear-conditioning, chemogenetically activating CREB-expressing amygdala engram neurons induces

freezing and also triggers reconsolidation-associated protein signaling cascades that may prime

memory-updating (Kim et al., 2014). Blocking plasticity with protein synthesis inhibition prevents

memory-updating and impairs learning-associated changes in firing patterns and synaptic turnover

(Dragoi and Tonegawa, 2013; Dupret et al., 2010; Kim et al., 2014; Li et al., 2017; Tse et al.,

2011). The myriad protein signal pathways triggered by learning also diversifyneuronal electrophysi-

ological properties, such as excitation and inhibition patterns. These signaling cascades may enable

complex interplay among a heterogeneous population to support and balance different aspects of

memory, such as stability and flexibility (Sweis et al., 2020; Yap and Greenberg, 2018). For exam-

ple, a recent study found that Fos- and Npas4-expressing granule cell ensembles in the dentate

gyrus were respectively responsible for generalization and discrimination of contextual fear memory

(Sun et al., 2020). Further study is required to fully understand how constellations of molecular com-

ponents interact in the cellular and network milieu to support high order cognition.

Temporal coordination of neuronal ensembles promotes neuronal
recruitment and memory-updating
In addition to the mobilization of plasticity mechanisms, neurons also need to spike in a temporally

coordinated fashion in order to be recruited (Bi and Poo, 1998). Once neurons become coordinated

at the millisecond scale, the resultant ensembles can then persist over longer timescales owing to

synaptic potentiation (Bi and Poo, 1998; Bliss and Collingridge, 1993). Oscillatory patterns in the

brain represent an organizational framework for grouping the spike timing of neuronal subpopula-

tions, which has led to a large body of literature on how rhythms could subserve experience-depen-

dent plasticity, and therefore also memory-updating. In the hippocampus, plasticity is thought to be

mediated by temporally coordinated neuronal ensembles within brief time windows such as the

sharp-wave ripple (SPW-R) envelope (Buzsáki, 2015) and individual cycles of the 4–12 Hz theta

rhythm (Colgin, 2013; Hasselmo et al., 2002; Larson et al., 1986). Both theta oscillations and SPW-

Rs are powerful instigators of plasticity and long-term potentiation (LTP). In vitro, theta-paced stimu-

lation is the optimal frequency for inducing LTP in hippocampal slices (Larson et al., 1986). Impor-

tantly, the theta phase is critical for determining whether LTP or synaptic depression occurs

(Hyman et al., 2003), meaning that not only is the magnitude of theta important, but also the spike

timing of neuronal ensembles within theta cycles (Colgin, 2013; Dragoi and Buzsáki, 2006). Recent

studies have shown that CA1 neuronal spiking needs to be temporally organized within theta cycles

in order to be recruited into SPW-R events after learning (Chenani et al., 2019; Dragoi, 2020;

Drieu et al., 2018; Farooq and Dragoi, 2019; Farooq et al., 2019). Thus, theta oscillations corral

ensembles for potentiation and memory-updating.

After temporal coordination, SPW-Rs may accelerate the rate of plasticity among the newly

recruited neurons during memory-updating to integrate them into the ensemble. Artificial induction

of SPW-Rs strengthens Schaffer collateral synapses in vitro (Sadowski et al., 2016), but curiously

also causes long-term depression in synapses that were not recently active (Norimoto et al., 2018).

This result suggests that recently activated ensembles are preferentially strengthened while connec-

tivity with less relevant neurons is eroded, resulting in enhanced signal-to-noise. Consistent with this

view, hippocampal SPW-Rs refine and stabilize place field maps in animals learning novel environ-

ments (Dupret et al., 2010; Gridchyn et al., 2020; Roux et al., 2017; van de Ven et al., 2016).

This process is facilitated by upregulating SPW-R prevalence during learning. As a rat learns a spatial

memory task, SPW-Rs increase in duration, and optogenetically prolonging SPW-Rs increases behav-

ioral performance and recruits neurons that have spatial fields in behaviorally relevant locations (Fer-

nández-Ruiz et al., 2019). This preferential recruitment implies a mechanism for prioritizing

integration of neurons that encode pertinent information and consequently serve important func-

tional roles (Kinsky et al., 2020; Michon et al., 2019). SPW-Rs likely bind old and new memories by

co-activating the appropriate ensembles. The end product is an updated ensemble whose spiking

patterns convey updated information about recently learned stimuli (Dupret et al., 2010; Fernán-

dez-Ruiz et al., 2019; Grosmark and Buzsaki, 2016; O’Neill et al., 2008; Roux et al., 2017;

van de Ven et al., 2016).
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Sharp-wave ripples coordinate cross-regional memory-updating
Hippocampal SPW-Rs could also recruit extrahippocampal neurons, which might help transmit and

integrate recent hippocampal computations with knowledge stored in the neocortex to facilitate

brain-wide memory-updating (Kumaran et al., 2016; McClelland et al., 1995). The reorganization

of neocortical spiking patterns could then readjust local (cortical) synaptic weights in a way that pro-

motes meaningful activation patterns, synthesizing updated memories that may support schemas

(Benchenane et al., 2010; Gilboa and Marlatte, 2017; Kumaran et al., 2016; Maingret et al.,

2016; Rothschild et al., 2017). This cross-regional dialogue is a signature of systems consolidation,

where the hippocampus is thought to train neocortical ensembles by developing and reinforcing

population patterns over a lifetime of experiences (Kumaran et al., 2016; McClelland et al., 1995).

Indeed, widespread activation of cortical regions is time-locked to hippocampal SPW-Rs

(Logothetis et al., 2012), and SPW-R coupling between neocortex and hippocampus becomes upre-

gulated after learning (Khodagholy et al., 2017). After learning, hippocampal SPW-Rs trigger spik-

ing in downstream cortical ensembles, and also couple with cortical oscillatory events such as

ripples, spindles, and delta waves (Alexander et al., 2018; Benchenane et al., 2010;

Khodagholy et al., 2017; Latchoumane et al., 2017; Maingret et al., 2016; Rothschild et al.,

2017; Todorova and Zugaro, 2019). These neocortical oscillatory events might themselves facilitate

local plasticity. Although the individual functions of each frequency band remain an active area of

research, generally, cross-regional coherence triggers spike pattern reorganization in downstream

readers of hippocampal SPW-Rs that could be the neurophysiological readout of memory-updating

(Benchenane et al., 2010; Kumaran et al., 2016; Maingret et al., 2016; Rothschild et al., 2017).

Recent evidence suggests that SPW-Rs can route specific content, suggesting that different memo-

ries can be individually communicated to downstream readers and updated separately

(Gridchyn et al., 2020). Hippocampal sequences, and their downstream neo- and subcortical read-

ers, could reflect a modified ensemble structure that balances both parsimony and newly acquired

information after undergoing experience-dependent plasticity.

Concluding remarks
In this review, we have discussed forms of memory-updating and their neurophysiological signatures.

We have proposed that these processes can be understood through the modification of neuronal

ensembles whose membership is determined by both existing circuitry between neurons and

intrinsicdynamics within neurons. Our framework is based on the idea that the integration of ensem-

ble activity creates functional affinities (i.e., related memories). The organization of the neurons

within these ensembles is heavily influenced by a combination of cellular excitability and functional

connectivity (pre-existing temporal activity patterns) and the enactment of plasticity that modifies

synaptic weights. While substantial work has shown that ‘stable’ engram neurons underlie memory

retrieval (Josselyn et al., 2015; Liu et al., 2012; Tonegawa et al., 2015), they do not necessarily

persist indefinitely without modification. Instead, to satisfy the stability–plasticity dilemma, ensemble

activities across brain regions must necessarily be fluid in order to update past memories with new

information.

Box 3. Outstanding questions.

- What is the neurobiological milieu that determines the rate of representational drift? Do neuromodulators, sleep, or neu-
roendocrine signals exert influence?

- Are drift rates in brain regions related to their local intrinsic synaptic volatility (Attardo et al., 2015)? What are the conse-
quences of these differences and how might this relate to the rate of memory-updating in hippocampal versus neocortical
structures (Kumaran et al., 2016)?

- How does ensemble remodeling occur in order to retain stored information while adding new information?

- Downstream of memory representations, what are the circuits and computations that transform these firing patterns into
behavioral decisions?
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While our review discusses how engrams change over time and experience, there is much still

unknown about how the brain resolves the end products of memory-updating. How do these new

modifications reconcile with established patterns? Previous studies have found that learning induces

enduring changes : population activity does not revert to its original state when a familiar rule is rein-

troduced (Dupret et al., 2010; Grewe et al., 2017; Malagon-Vina et al., 2018; McKenzie et al.,

2013). These findings suggest that interleaved learning episodes can have lasting effects on the

computational outputs of mnemonic systems, reflecting acquisition of new knowledge

(Kumaran et al., 2016). One particularly interesting idea is that this new knowledge might be inte-

grated with the old via the recombination of sub-ensembles, facilitating the formation of new rela-

tional topologies (Sweis et al., 2020; Ghandour et al., 2019).

An interesting effect of dynamic ensembles is that ‘tuning’ from neuronal populations relative to

the external world deteriorates over time, which explains many observations of apparent neural

instability (Chambers and Rumpel, 2017; Driscoll et al., 2017; Mankin et al., 2012; Mau et al.,

2018; Rubin et al., 2015; Rule et al., 2019; Ziv et al., 2013). That is, the patterns of neuronal

responses related to external stimuli are short-lived. Instead, the internal mappings between neurons

persist through time. From the reference frame of the environment, the neural code for some vari-

able (e.g., spatial location) may be drifting, but from the reference frame of the neurons, representa-

tions might remain stable due to compensatory adaptation at the network level (Kalle Kossio et al.,

2020; Gonzalez et al., 2019; Kinsky et al., 2018; Rule et al., 2019; Rule et al., 2020). Such an out-

come may arise from slow, coherent representational shifts such that different brain regions collec-

tively shift in a coordinated manner. Among these regions may be ‘readers’ that interpret the

messages of memory ensembles, and if those networks remodel coherently with upstream inputs,

this could support the continuity of memories over time (Buzsáki, 2010; Kalle Kossio et al., 2020;

Rule et al., 2020) while also providing a means to update those memories. Thus, it is important to

consider how inter-cellular activity patterns are modified during learning, and one major future ave-

nue of research should be to determine how memory-updating rearranges internal activity patterns

in an organized manner that retains past information while integrating new data. Most importantly,

this perspective forces us to re-assess our very notions of stability. Nearly all central nervous system

neurons are many synapses away from direct contact with physical stimuli, so if the upstream popula-

tions that do supply their input are inherently dynamic, we should rarely expect a neuron to maintain

a stable relationship to an external variable even in the context of memory. Instead, we take the

view that brain dynamics help generate unique combinatorial patterns onto which both new and

familiar experiences are embedded.

While many outstanding questions persist (Box 3), emerging technologies will prove critical for

enhancing our understanding of the dynamic brain. In particular, voltage imaging (Adam et al.,

2019; Piatkevich et al., 2019) has the advantage of being able to track neurons longitudinally while

also providing exquisite temporal resolution and sensitivity to signals that are undetectable with cal-

cium imaging (e.g., subthreshold depolarizations). Combining this with other optical techniques in

freely behaving animals (Cai et al., 2016; Ziv et al., 2013) will allow us to advance our understand-

ing of the dynamic brain.
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Pastalkova E, Itskov V, Amarasingham A, Buzsáki G. 2008. Internally generated cell assembly sequences in the
rat Hippocampus. Science 321:1322–1327. DOI: https://doi.org/10.1126/science.1159775, PMID: 18772431

Mau et al. eLife 2020;9:e63550. DOI: https://doi.org/10.7554/eLife.63550 21 of 24

Review Article Neuroscience

https://doi.org/10.1038/nn.4304
https://doi.org/10.1038/s41467-017-02764-x
https://doi.org/10.1038/s41467-017-02764-x
https://doi.org/10.1073/pnas.1214107109
https://doi.org/10.1016/j.neuron.2007.08.017
http://www.ncbi.nlm.nih.gov/pubmed/17988635
https://doi.org/10.1038/nn.3240
https://doi.org/10.1016/j.cub.2018.03.051
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1098/rstb.2019.0637
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1523/JNEUROSCI.0879-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/23785140
https://doi.org/10.1016/j.neuron.2014.05.019
http://www.ncbi.nlm.nih.gov/pubmed/24910078
https://doi.org/10.1101/803577
https://doi.org/10.1016/j.neuron.2011.06.037
http://www.ncbi.nlm.nih.gov/pubmed/21791282
https://doi.org/10.1038/nn1696
https://doi.org/10.1016/j.cub.2019.03.048
https://doi.org/10.1016/j.cub.2019.03.048
http://www.ncbi.nlm.nih.gov/pubmed/31031113
https://doi.org/10.1371/journal.pbio.1000136
https://doi.org/10.1371/journal.pbio.1000136
http://www.ncbi.nlm.nih.gov/pubmed/19554080
https://doi.org/10.1126/science.160.3827.554
https://doi.org/10.1126/science.160.3827.554
http://www.ncbi.nlm.nih.gov/pubmed/5689415
https://doi.org/10.1038/nature13294
https://doi.org/10.1016/j.neubiorev.2012.03.001
https://doi.org/10.1038/35021052
https://doi.org/10.1126/science.aao0702
https://doi.org/10.1126/science.aao0702
https://doi.org/10.1016/0006-8993(71)90358-1
http://www.ncbi.nlm.nih.gov/pubmed/5124915
https://doi.org/10.1038/nn2037
https://doi.org/10.1016/j.celrep.2015.03.017
https://doi.org/10.1016/j.celrep.2015.03.017
http://www.ncbi.nlm.nih.gov/pubmed/25843716
https://doi.org/10.1126/science.1159775
http://www.ncbi.nlm.nih.gov/pubmed/18772431
https://doi.org/10.7554/eLife.63550


Peters AJ, Lee J, Hedrick NG, O’Neil K, Komiyama T. 2017. Reorganization of corticospinal output during motor
learning. Nature Neuroscience 20:1133–1141. DOI: https://doi.org/10.1038/nn.4596

Pfeiffer T, Poll S, Bancelin S, Angibaud J, Inavalli VK, Keppler K, Mittag M, Fuhrmann M, Nägerl UV. 2018.
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