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Abstract

Representational drift refers to the dynamic nature of neural representations in the brain
despite the behavior being seemingly stable. Although drift has been observed in many
different brain regions, the mechanisms underlying it are not known. Since intrinsic neural
excitability is suggested to play a key role in regulating memory allocation, fluctuations of
excitability could bias the reactivation of previously stored memory ensembles and
therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural
network with slow fluctuations of intrinsic excitability. We first show that subsequent
reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that
drift is induced by co-activation of previously active neurons along with neurons with high
excitability which leads to remodelling of the recurrent weights. Consistent with previous
experimental works, the drifting ensemble is informative about its temporal history.
Crucially, we show that the gradual nature of the drift is necessary for decoding temporal
information from the activity of the ensemble. Finally, we show that the memory is
preserved and can be decoded by an output neuron having plastic synapses with the main
region.

eLife assessment

This is an important theoretical study providing insight into how fluctuations in
excitability can contribute to gradual changes in the mapping between population
activity and stimulus, commonly referred to as representational drift. The authors
provide convincing evidence that fluctuations can contribute to drift, though certain
modeling choices could benefit from justification or further exploration of
alternatives. Overall, this is a well-presented study that explores the question of how
changes in intrinsic excitability can influence memory representations.

Introduction

In various brain regions, the neural code tends to be dynamic although behavioral outputs
remain stable. Representational drift refers to the dynamic nature of internal
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representations as they have been observed in sensory cortical areas [(1)–(3)] or the
hippocampus (4; 5) despite stable behavior. It has even been suggested that pyramidal
neurons from the CA1 and CA3 regions form dynamic rather than static memory engrams (5;
6), namely that the set of neurons encoding specific memories varies across days. In the
amygdala, retraining of a fear memory task induces a turnover of the memory engram (7).
Additionally, plasticity mechanisms have been proposed to compensate for drift and to
provide a stable read-out of the neural code (8), suggesting that information is maintained.
Altogether, this line of evidence suggest that drift might be a general mechanism with
dynamical representations observed in various brain regions.

However, the mechanisms underlying the emergence of drift and its relevance for the
neural computation are not known. Drift is often thought to arise from variability of internal
states (2), neurogenesis (1; 9) or synaptic turnover (10). Excitability might also play a role in
memory allocation [(11)–(14)], so that neurons having high excitability are preferentially
allocated to memory ensembles [(14)–(16)]. Moreover, excitability is known to fluctuate over
timescales from hours to days, in the amygdala (16), the hippocampus (15; 17) or the cortex
(18; 19). Subsequent reactivations of a neural ensemble at different time points could
therefore be biased by excitability (20), which varies at similar timescales than drift (21).
Altogether, this evidence suggest that fluctuations of excitability could act as a cellular
mechanism for drift (12).

In this short communication, we aimed at proposing how excitability could indeed induce a
drift of neural ensembles at the mechanistic level. We simulated a recurrent neural network
(22) equipped with intrinsic neural excitability and Hebbian learning. As a proof of
principle, we first show that slow fluctuations of excitability can induce neural ensembles to
drift in the network. We then explore the functional implications of such drift. Consistent
with previous works [(21), (23)–(25)], we show that neural activity of the drifting ensemble is
informative about the temporal structure of the memory. This suggest that fluctuations of
excitability can be useful for time-stamping memories (i.e. for making the neural ensemble
informative about the time at which it was form). Finally, we confirmed that the content of
the memory itself can be steadily maintained using a read-out neuron and local plasticity
rule, consistently with previous computational works (8). The goal of this study is to show
one possible mechanistic implementation of how excitability can drive drift.

Results

Many studies have shown that memories are encoded in sparse neural ensembles that are
activated during learning and many of the same cells are reactivated during recall,
underlying a stable neural representation (12; 26; 27). After learning, subsequent
reactivations of the ensemble can happen spontaneously during replay, retraining or during
a memory recall task (e.g. following presentation of a cue (26; 28)). Here, we directly tested
the hypothesis that slow fluctuations of excitability can change the structure of a newly-
formed neural ensemble, through subsequent reactivations of this ensemble. To that end, we
designed a rate-based, recurrent neural network, equipped with intrinsic neural excitability
(Methods). We considered that the recurrent weights are all-to-all and plastic, following a
Hebbian rule (Methods). The network was then stimulated following a 4-day protocol: the
first day corresponds to the initial encoding of a memory and the other days correspond to
spontaneous or cue-induced reactivations of the neural ensemble (Methods). Finally, we
considered that excitability of each neuron can vary on a day long timescale: each day, a
different subset of neurons has increased excitability (Fig. 1a, Methods).
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Figure 1:

Excitability-induced drift of
memory ensembles.

a) Distribution of excitability εi for each neu‐
ron i, fluctuating over time. During each stim‐
ulation, a different pool of neurons has a high
excitability (Methods). b) and c) Firing rates of
the neurons across time. The red traces in
panel c) correspond to neurons belonging to
the first assembly, namely that have a firing
rate higher than the active threshold after the
first stimulation. The black bars show the
stimulation and the dashed lines correspond
to the active threshold. d) Recurrent weights
matrices after each of the four stimuli show
the drifting assembly.

Fluctuations of intrinsic excitability induce drifting of
neural ensembles
While stimulated the naive network on the first day, we observed the formation of a neural
ensemble: some neurons gradually increase their firing rate (Fig. 1b and c, neurons 10 to 20,
time steps 1000 to 3000) during the stimulation. We observed that these neurons are highly
recurrently connected (Fig. 1d, leftmost matrix) suggesting that they form an assembly. This
assembly is composed of neurons that have a high excitability (Fig. 1a, neurons 10 to 20 have
increase excitability) at the time of the stimulation. We then show that further stimulations
of the network induce a remodeling of the weights. During the second stimulation for
instance (Fig. 1b and c, time steps 4000 to 6000), neurons from the previous assembly (10 to
20) are reactivated along with neurons having high excitability at the time of the second
stimulation (Fig. 1a, neurons 20 to 30). Moreover, across several days, recurrent weights
from previous assemblies tend to decrease while others increase (Fig. 1d). Indeed, neurons
from the original assembly (Fig. 1c, red traces) tend to be replaced by other neurons, either
from the latest assembly or from the pool of neurons having high excitability. This is
translated at the synaptic level, where weights from previous assemblies tend to decay and
be replaced by new ones. Overall, each new stimulation updates the ensemble according to
the current distribution of excitability, inducing a drift towards neurons with high
excitability.
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Activity of the drifting ensemble is informative about the
temporal structure of the past experience
After showing that fluctuations of excitability can induce a drift among neural ensembles,
we tested whether the drifting ensemble could contain temporal information about its past
experiences, as suggested in previous works (23). Inspired by these works, we asked whether
it was possible to decode relevant temporal information from the patterns of activity of the
neural ensemble. We first observed that the correlation between patterns of activity after
just after encoding across days decreases (Fig. 2a, Methods), indicating that after each day,
the newly formed ensemble resembles less the original one. Because the patterns of activity
differ across days, they should be informative about the absolute day from which they were
recorded. To test this hypothesis, we designed a day decoder (Fig. 2b, Methods), following the
work of Rubin et al., 2015 (23). This decoder aims at inferring the reactivation day of a given
activity pattern by comparing the activity of this pattern during training and the activity just
after memory encoding without increase in excitability (Fig. 2b, Methods). We found that the
day decoder perfectly outputs the reactivation day as compared to using shuffled data (Fig.
2c, blue and orange bars).

Figure 2:

Neuronal activity is informative
about the temporal structure of
the reactivations.

a) Correlation of the patterns of activity be‐
tween the first day and every other days, for n
= 10 simulations. Data are shown as mean ±
s.e.m. b) Schema of the day decoder. The day
decoder maximises correlation between the
patterns of each day with the pattern from
the simulation with no increase in excitability.
c) Results of the day decoder for the real data
(blue) and the shuffled data (orange).
Shuffled data consist of the same activity pat‐
tern for which the label of each cells for every
seed has been shuffled randomly. For each
simulation, the error is measured for each day
as the difference between the decoded and

the real day. Data are shown for n = 10 simulations and for each of the 4 days. d) Schema of the ordinal time decoder.
This decoder output the permutation p that maximises the sum S(p) of the correlations of the patterns for each pairs of
days. e) Distribution of the value S(p) for each permutation of days p. The value for the real permutation S(preal) is shown
in black. f) Student’s test t-value for n = 10 simulations, for the real (blue) and shuffled (orange) data and for different
amplitudes of excitability E. Data are shown as mean ± s.e.m. for n = 10 simulations.

After showing that the patterns of activity are informative about the reactivation day, we
took a step further by asking to whether the activity of the neurons is also informative about
the order in which the memory evolved. To that end, we used an ordinal time decoder
(Methods, as in Rubin et al., 2015 (23)) that uses the correlations between activity patterns
for pairs of successive days, and for each possible permutation of days p (Fig. 2d, Methods).

https://elifesciences.org/
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The sum of these correlations S(p) differs from each permutation p and we assumed that the
neurons are informative about the order at which the reactivations of the ensemble
happened if the permutation maximising S(p) corresponds to the real permutation preal (Fig.
2e, Methods). We found that S(preal) was indeed statistically higher than S(p) for the other
permutations E (Fig. 2f, Student’s t-test, Methods). However, this was only true when the
amplitude of the fluctuations of excitability E was in to a certain range. Indeed, when the
amplitude of the fluctuations is null, i.e. when excitability is not increased (E = 0), the
ensemble does not drift (Fig. S1a). In this case, the patterns of activity are not informative
about the order of reactivations. On the other hand, if the excitability amplitude is too high
(E = 3), each new ensemble is fully determined by the distribution of excitability, regardless
of any previously formed ensemble (Fig. S1c). In this regime, the patterns of activity are not
informative about the order of the reactivations either. In the intermediate regime (E = 1.5),
the decoder is able to correctly infer the order at which the reactivations happened, better
than using the shuffled data (Fig. 2f, Fig. S1b).

A read-out neuron can track the drifting ensemble
So far, we showed that the drifting ensemble contains information about its history, namely
about the days and the order at which the subsequent reactivations of the memory
happened. However, we have not shown that we could use the neural ensemble to actually
decode the memory itself, in addition to its temporal structure. To that end, we introduced a
decoding output neuron connected to the recurrent neural network, with plastic weights
following a Hebbian rule (Methods). As shown by Rule et al., 2022 (8), the goal was to make
sure that the output neuron can track the ensemble even if it is drifting. This can be down by
constantly decreasing weights from neurons that are no longer in the ensemble and
increasing those associated with neurons joining the ensemble (Fig. 3a). We found that the
output neuron could steadily decode the memory (i.e. it has a higher firing than in the case
where the output weights are randomly shuffled; Fig. 3b, blue trace for the real output and
white, orange and red traces for the shuffled weights). This is due to the fact that weights are
plastic under Hebbian learning, as shown by Rule et al. 2022 (8). We confirmed that this was
induced by a change in the output weights across time (Fig. 3c). In particular, the weights
from neurons that no longer belong to the ensemble are decreased while weights from
newly recruited neurons are increased, so that the center of mass of the weights distribution
drifts across time (Fig. 3d).

https://elifesciences.org/
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Figure 3:

A single output neuron can
track the memory ensemble
through Hebbian plasticity.

a) Conceptual architecture of the network: the
read-out neuron y in red “tracks” the ensem‐
ble by decreasing synapses linked to the pre‐
vious ensemble and increasing new ones to
linked to the new assembly. b) Output neu‐
ron’s firing rate across time. The blue trace
correspond to the real output. The white, or‐
ange and red traces correspond to the cases
where the output weights were randomly
shuffled for every time points after presenta‐
tion of the first, second and third stimulus, re‐
spectively. C) Output weights for each neuron
across time. d) Center of mass of the distribu‐
tion of the output weights (Methods) across
days. The output weights are centered around

the neurons that belong to the assembly at each day. Data are shown as mean ± s.e.m. for n = 10 simulations.

Discussion

Overall, our model suggests a potential cellular mechanisms for the emergence of drift that
can serve a computational purpose by “time-stamping” memories while still being able to
decode the memory across time. Although the high performance of the day decoder was
expected, the performance of the ordinal time decoder is not trivial. Indeed, the patterns of
activity of each day are informative about the distribution of excitability and therefore
about the day at which the reactivation happened. However, the ability for the neural
ensemble to encode the order of past reactivations requires drift to be gradual (i.e. requires
consecutive patterns of activity to remain correlated across days). Indeed, if the amplitude of
excitability is too low (E = 0) or too high (E = 3), it is not possible to decode the order at which
the successive reactivations happened. This result is consistent with the previous works
showing gradual change in neural representations, that allows for decoding temporal
information of the ensemble (23). Moreover, such gradual drifts could support complex
cognitive mechanisms like mental time-travel during memory recall (23).

In our model, drift is induced by co-activation of the previously formed ensemble and
neurons with high excitability at the time of the reactivation. The pool of neurons having
high excitability can therefore “time-stamps” memory ensembles by biasing allocation of
these ensembles (21; 23; 24). We suggest that such time-stamping mechanism could also help
link memories that are temporally close and dissociate those which are spaced by longer
time (3; 12; 29). Indeed, the pool of neurons with high excitability varies across time so that
any new memory ensemble is allocated to neurons which are shared with other ensembles
formed around the same time. This mechanism could be complementary to the learning-
induced increase in excitability observed in amygdala (16), hippocampal CA1 (15) and
dentate gyrus (30).

https://elifesciences.org/
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Finally, our work suggests that drift is determine both by the number of reactivations of the
ensemble and the fluctuations of excitability. In particular, it is not directly related to the
elapsed time between two recordings. This is consistent with growing evidence that drift is
dependent more on the previous experience than on the elapsed time between different
recordings (9; 23; 31). This work is also in line with the recent findings showing that
fluctuations of excitability can happen for multiple reasons related to experience such as
neurogenesis (9; 29; 32), sleep (33) or increase in dopamine level (34). Overall, our work is a
proof of principle which highlights the importance of considering excitability when studying
drift, although further work would be needed to test this link experimentally.

Methods

Recurrent neural network with excitability
Our rate-based model consists of a single region of N neurons (with firing rate ri, 1 ≤ i ≤ N).
All-to-all recurrent connections W are plastic and follow a Hebbian rule given by:

where i and j correspond to the pre- and post-synaptic neuron respectively. τW and τdecay
are the learning and the decay time constants of the weights, respectively. A hard bound of
[0, 1] was apply to these weights. We also introduced a global inhibition term dependent on
the activity of the neurons:

Where I0, I1 and I2 are positive constants. All neurons receive the same input, Δ(t), during
stimulation of the network (Fig. 1c, black bars). Finally, excitability is modeled as a time-
varying threshold εi of the input-output function of each neuron i. The rate dynamics of a
neuron i is given by:

where τr is the decay time of the rates and ReLU is the rectified linear activation function.
We considered that a neurons is active when its firing rate reaches the active threshold θ.

Protocol
We designed a 4-day protocol, corresponding to the initial encoding of a memory (1st day)
and subsequent random or cue-induced reactivations of the ensemble (26; 28) (2nd, 3rd and
4th day). Each stimulation consists of Nrep repetitions of interval T spaced by a inter-
repetition delay IR. Δ(t) takes the value δ during these repetitions and is set to 0 otherwise.
The stimulation is repeated four times, modelling four days of reactivation, spaced by an
inter-day delay ID. Excitability εi of each neuron i is sampled from a chi-squared distribution
of parameter 1. Neurons 10 to 20, 20 to 30, 30 to 40 and 40 to 50 then receive an increase of

https://elifesciences.org/
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excitability of amplitude E, respectively on days 1, 2, 3 and 4 (Fig. 1a). A different seed is used
for each repetitions of the simulations.

Decoders
For each day d, we recorded the activity pattern Vd, which is a vector composed of the firing
rate of the neurons 50 time steps after the beginning of the last repetition of stimulation. To
test the decoder, we also stimulated the network while setting the excitability at baseline (E =
0), and recorded the resulted pattern of activity  for each day d. We then designed two
types of decoders, inspired by previous works (23): (1) a day decoder which infers the day at
which each stimulation happened and (2) an ordinal time decoder which infers the order at
which the reactivations occurred. For both decoders, the shuffled data was obtained by
randomly shuffling the day label of each neuron.

1. The day decoder aims at inferring the day at which a specific patterned of activity
occurred. To that end, we computed the Pearson correlation between the pattern with no
excitability  of the day d and the patterns of all days d′ from the first simulation Vd

′. Then,
the decoder outputs the day dinf that maximises the correlation:

The error was defined as the difference between the inferred and the real day dinf − d.

2. The ordinal time decoder aims at inferring the order at which the reactivations happened
from the patterns of activity Vd of every days d. To that end, we computed the pairwise
correlations of each consecutive days, for the 4! possible permutations of days p. The real
permutation is called preal = (1, 2, 3, 4) and corresponds to the real order of reactivations:
day 1 → day 2 → day 3 → day 4. The sum of these correlations over the 3 pairs of consecutive
days is expressed as:

We then compared the distribution of these quantities for each permutation p to that of the
real permutation S(preal) (Fig. 2). The patterns of activity are informative about the order of
reactivations if S(preal) corresponds to the maximal value of S(p). To compare S(preal) with
the distribution S(p), we performed a Student’s t-test, where the t-value is defined as :

where µ and σ corresponds to the mean and standard deviation of the distribution S(p),
respectively.

Memory read-out
To test if the network is able to decode the memory at any time point, we introduced a read-
out neuron with plastic synapses to neurons from the recurrent network, inspired by
previous computational works (8). The weights of these synapses are named

 and follow the Hebbian rule defined

https://elifesciences.org/
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where  and  corresponds to the learning time and decay time constant, respectively.
h(Wout) is a homeostatic term defined as  which decreases to 0
throughout learning. h takes the value 1 before learning and 0 when the sum of the weights
reaches the value 1. y is the firing rate of the output neuron defined y as:

Parameters
The following parameters have been used for all simulations, when not specify otherwise.
All except N are in arbitrary unit.

https://elifesciences.org/
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Supplementary

Figure S1:

Comparison of drifting behavior
for different values of
excitability amplitude.

a) E = 0, no drift. A neural assembly is initially
formed during the first stimulation and later
reactivated every subsequent day. b) E = 1.5,
partial drift. The ensemble is gradually modi‐
fied during each new stimulation. c) E = 3, full
drift. Each new stimulation leads to formation
of a new ensemble, containing neurons that
have high excitability during this time.
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Senior Editor
Laura Colgin
University of Texas at Austin, United States of America

Reviewer #1 (Public Review):
Current experimental work reveals that brain areas implicated in episodic and spatial
memory have a dynamic code, in which activity representing familiar events/locations
changes over time. This paper shows that such reconfiguration is consistent with underlying
changes in the excitability of cells in the population, which ties these observations to a
physiological mechanism.

Delamare et al. use a recurrent network model to consider the hypothesis that slow
fluctuations in intrinsic excitability, together with spontaneous reactivations of ensembles,
may cause the structure of the ensemble to change, consistent with the phenomenon of
representational drift. The paper focuses on three main findings from their model: (1)
fluctuations in intrinsic excitability lead to drift, (2) this drift has a temporal structure, and
(3) a readout neuron can track the drift and continue to decode the memory. This paper is
relevant and timely, and the work addresses questions of both a potential mechanism
(fluctuations in intrinsic excitability) and purpose (time-stamping memories) of drift.

The model used in this study consists of a pool of 50 all-to-all recurrently connected
excitatory neurons with weights changing according to a Hebbian rule. All neurons receive
the same input during stimulation, as well as global inhibition. The population has
heterogeneous excitability, and each neuron's excitability is constant over time apart from a
transient increase on a single day. The neurons are divided into ensembles of 10 neurons
each, and on each day, a different ensemble receives a transient increase in the excitability
of each of its neurons, with each neuron experiencing the same amplitude of increase. Each
day for four days, repetitions of a binary stimulus pulse are applied to every neuron.

The modeling choices focus in on the parameter of interest-the excitability-and other details
are generally kept as straightforward as possible. That said, I wonder if certain aspects may
be overly simple. The extent of the work already performed, however, does serve the
intended purpose, and so I think it would be sufficient for the authors to comment on these
choices rather than to take more space in this paper to actually implement these choices.
What might happen were more complex modeling choices made? What is the justification
for the choices that are made in the present work?

The two specific modeling choices I question are (1) the excitability dynamics and (2) the
input stimulus. The ensemble-wide synchronous and constant-amplitude excitability
increase, followed by a return to baseline, seems to be a very simplified picture of the
dynamics of intrinsic excitability. At the very least, justification for this simplified picture
would benefit the reader, and I would be interested in the authors' speculation about how a
more complex and biologically realistic dynamics model might impact the drift in their
network model. Similarly, the input stimulus being binary means that, on the single-neuron
level, the only type of drift that can occur is a sort of drop-in/drop-out drift; this choice
excludes the possibility of a neuron maintaining significant tuning to a stimulus but
changing its preferred value. How would the use of a continuous input variable influence
the results.

Result (1): Fluctuations in intrinsic excitability induce drift
The two choices highlighted above appear to lead to representations that never recruit the
neurons in the population with the lowest baseline excitability (Figure 1b: it appears that
only 10 neurons ever show high firing rates) and produce networks with very strong
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bidirectional coupling between this subset of neurons and weak coupling elsewhere (Figure
1d). This low recruitment rate need may not necessarily be problematic, but it stands out as
a point that should at least be commented on. The fact that only 10 neurons (20% of the
population) are ever recruited in a representation also raises the question of what would
happen if the model were scaled up to include more neurons.

Result (2): The observed drift has a temporal structure
The authors then demonstrate that the drift has a temporal structure (i.e., that activity is
informative about the day on which it occurs), with methods inspired by Rubin et al. (2015).
Rubin et al. (2015) compare single-trial activity patterns on a given session with full-session
activity patterns from each session. In contrast, Delamare et al. here compare full-session
patterns with baseline excitability (E = 0) patterns. This point of difference should be
motivated. What does a comparison to this baseline excitability activity pattern tell us? The
ordinal decoder, which decodes the session order, gives very interesting results: that an
intermediate amplitude E of excitability increase maximizes this decoder's performance.
This point is also discussed well by the authors. As a potential point of further exploration,
the use of baseline excitability patterns in the day decoder had me wondering how the
ordinal decoder would perform with these baseline patterns.

Result (3): A readout neuron can track drift
The authors conclude their work by connecting a readout neuron to the population with
plastic weights evolving via a Hebbian rule. They show that this neuron can track the
drifting ensemble by adjusting its weights. These results are shown very neatly and
effectively and corroborate existing work that they cite very clearly.

Overall, this paper is well-organized, offers a straightforward model of dynamic intrinsic
excitability, and provides relevant results with appropriate interpretations. The methods
could benefit from more justification of certain modeling choices, and/or an exploration
(either speculative or via implementation) of what would happen with more complex
choices. This modeling work paves the way for further explorations of how intrinsic
excitability fluctuations influence drifting representations.

Reviewer #2 (Public Review):
In this computational study, Delamare et al identify slow neuronal excitability as one
mechanism underlying representational drift in recurrent neuronal networks and that the
drift is informative about the temporal structure of the memory and when it has been
formed. The manuscript is very well written and addresses a timely as well as important
topic in current neuroscience namely the mechanisms that may underlie representational
drift.

The study is based on an all-to-all recurrent neuronal network with synapses following
Hebbian plasticity rules. On the first day, a cue-related representation is formed in that
network and on the next 3 days it is recalled spontaneously or due to a memory-related cue.
One major observation is that representational drift emerges day-by-day based on intrinsic
excitability with the most excitable cells showing highest probability to replace previously
active members of the assembly. By using a day-decoder, the authors state that they can
infer the order at which the reactivation of cell assemblies happened but only if the
excitability state was not too high. By applying a read-out neuron, the authors observed that
this cell can track the drifting ensemble which is based on changes of the synaptic weights
across time. The only few questions which emerged and could be addressed either
theoretically or in the discussion are as follows:
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1. Would the similar results be obtained if not all-to-all recurrent connections would have
been molded but more realistic connectivity profiles such as estimated for CA1 and CA3?
2. How does the number of excited cells that could potentially contribute to an engram
influence the representational drift and the decoding quality?
3. How does the rate of the drift influence the quality of readout from the readout-out
neuron?

Reviewer #3 (Public Review):
The authors explore an important question concerning the underlying mechanism of
representational drift, which despite intense recent interest remains obscure. The paper
explores the intriguing hypothesis that drift may reflect changes in the intrinsic excitability
of neurons. The authors set out to provide theoretical insight into this potential mechanism.

They construct a rate model with all-to-all recurrent connectivity, in which recurrent
synapses are governed by a standard Hebbian plasticity rule. This network receives a global
input, constant across all neurons, which can be varied with time. Each neuron also is
driven by an "intrinsic excitability" bias term, which does vary across cells. The authors
study how activity in the network evolves as this intrinsic excitability term is changed.

They find that after initial stimulation of the network, those neurons where the excitability
term is set high become more strongly connected and are in turn more responsive to the
input. Each day the subset of neurons with high intrinsic excitability is changed, and the
network's recurrent synaptic connectivity and responsiveness gradually shift, such that the
new high intrinsic excitability subset becomes both more strongly activated by the global
input and also more strongly recurrently connected. These changes result in drift, reflected
by a gradual decrease across time in the correlation of the neuronal population vector
response to the stimulus.

The authors are able to build a classifier that decodes the "day" (i.e. which subset of neurons
had high intrinsic excitability) with perfect accuracy. This is despite the fact that the
excitability bias during decoding is set to 0 for all neurons, and so the decoder is really
detecting those neurons with strong recurrent connectivity, and in turn strong responses to
the input. The authors show that it is also possible to decode the order in which different
subsets of neurons were given high intrinsic excitability on previous "days". This second
result depends on the extent by which intrinsic excitability was increased: if the increase in
intrinsic excitability was either too high or too low, it was not possible to read out any
information about past ordering of excitability changes.

Finally, using another Hebbian learning rule, the authors show that an output neuron,
whose activity is a weighted sum of the activity of all neurons in the network, is able to read
out the activity of the network. What this means specifically, is that although the set of
neurons most active in the network changes, the output neuron always maintains a higher
firing rate than a neuron with randomly shuffled synaptic weights, because the output
neuron continuously updates its weights to sample from the highly active population at any
given moment. Thus, the output neuron can readout a stable memory despite drift.

Strengths:
The authors are clear in their description of the network they construct and in their results.
They convincingly show that when they change their "intrinsic excitability term", upon
stimulation, the Hebbian synapses in their network gradually evolve, and the combined
synaptic connectivity and altered excitability result in drifting patterns of activity in
response to an unchanging input (Fig. 1, Fig. 2a). Furthermore, their classification analyses
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(Fig. 2) show that information is preserved in the network, and their readout neuron
successfully tracks the active cells (Fig. 3). Finally, the observation that only a specific range
of excitability bias values permits decoding of the temporal structure of the history of
intrinsic excitabililty (Fig. 2f and Figure S1) is interesting, and as the authors point out, not
trivial.

Weaknesses:

1. The way the network is constructed, there is no formal difference between what the
authors call "input", Δ(t), and what they call "intrinsic excitability" Ɛ_i(t) (see Equation
3). These are two separate terms that are summed (Eq. 3) to define the rate dynamics
of the network. The authors could have switched the names of these terms: Δ(t) could
have been considered a global "intrinsic excitability term" that varied with time and
Ɛ_i(t) could have been the external input received by each neuron i in the network. In
that case, the paper would have considered the consequence of "slow fluctuations of
external input" rather than "slow fluctuations of intrinsic excitability", but the results
would have been the same. The difference is therefore semantic. The consequence is
that this paper is not necessarily about "intrinsic excitability", rather it considers how
a Hebbian network responds to changes in excitatory drive, regardless of whether
those drives are labeled "input" or "intrinsic excitability".

2. Given how the learning rule that defines input to the readout neuron is constructed,
it is trivial that this unit responds to the most active neurons in the network, more so
than a neuron assigned random weights. What would happen if the network included
more than one "memory"? Would it be possible to construct a readout neuron that
could classify two distinct patterns? Along these lines, what if there were multiple,
distinct stimuli used to drive this network, rather than the global input the authors
employ here? Does the system, as constructed, have the capacity to provide two
distinct patterns of activity in response to two distinct inputs?

Impact:
Defining the potential role of changes in intrinsic excitability in drift is fundamental. Thus,
this paper represents a potentially important contribution. Unfortunately, given the way the
network employed here is constructed, it is difficult to tease apart the specific contribution
of changing excitability from changing input. This limits the interpretability and
applicability of the results.
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